Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy.
نویسندگان
چکیده
BACKGROUND Mutations in the gamma2 subunit (PRKAG2) of AMP-activated protein kinase produce an unusual human cardiomyopathy characterized by ventricular hypertrophy and electrophysiological abnormalities: Wolff-Parkinson-White syndrome (WPW) and progressive degenerative conduction system disease. Pathological examinations of affected human hearts reveal vacuoles containing amylopectin, a glycogen-related substance. METHODS AND RESULTS To elucidate the mechanism by which PRKAG2 mutations produce hypertrophy with electrophysiological abnormalities, we constructed transgenic mice overexpressing the PRKAG2 cDNA with or without a missense N488I human mutation. Transgenic mutant mice showed elevated AMP-activated protein kinase activity, accumulated large amounts of cardiac glycogen (30-fold above normal), developed dramatic left ventricular hypertrophy, and exhibited ventricular preexcitation and sinus node dysfunction. Electrophysiological testing demonstrated alternative atrioventricular conduction pathways consistent with WPW. Cardiac histopathology revealed that the annulus fibrosis, which normally insulates the ventricles from inappropriate excitation by the atria, was disrupted by glycogen-filled myocytes. These anomalous microscopic atrioventricular connections, rather than morphologically distinct bypass tracts, appeared to provide the anatomic substrate for ventricular preexcitation. CONCLUSIONS Our data establish PRKAG2 mutations as a glycogen storage cardiomyopathy, provide an anatomic explanation for electrophysiological findings, and implicate disruption of the annulus fibrosis by glycogen-engorged myocytes as the cause of preexcitation in Pompe, Danon, and other glycogen storage diseases.
منابع مشابه
Distinct early signaling events resulting from the expression of the PRKAG2 R302Q mutant of AMPK contribute to increased myocardial glycogen.
BACKGROUND Humans with an R302Q mutation in AMPKgamma(2) (the PRKAG2 gene) develop a glycogen storage cardiomyopathy characterized by a familial form of Wolff-Parkinson-White syndrome and cardiac hypertrophy. This phenotype is recapitulated in transgenic mice with cardiomyocyte-restricted expression of AMPKgamma(2)R302Q. Although considerable information is known regarding the consequences of h...
متن کاملConstitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy.
Mutations in PRKAG2, the gene for the gamma 2 regulatory subunit of AMP-activated protein kinase, cause cardiac hypertrophy and electrophysiologic abnormalities, particularly preexcitation (Wolff-Parkinson-White syndrome) and atrioventricular conduction block. To understand the mechanisms by which PRKAG2 defects cause disease, we defined novel mutations, characterized the associated cardiac his...
متن کاملReversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations.
BACKGROUND PRKAG2 mutations cause glycogen-storage cardiomyopathy, ventricular preexcitation, and conduction system degeneration. A genetic approach that utilizes a binary inducible transgenic system was used to investigate the disease mechanism and to assess preventability and reversibility of disease features in a mouse model of glycogen-storage cardiomyopathy. METHODS AND RESULTS Transgeni...
متن کاملOverexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish.
The Wolff-Parkinson-White (WPW) syndrome was believed to be associated with PRKAG2 gene mutations. In this study, we verified the pathopoiesis of G100S mutation, a novel mutation only discovered in Chinese patients with WPW, in cardiac disorder. Similar to R302Q, when overexpressed PRKAG2 G100S mutant in zebrafish, we observed a thicker heart wall, detected a decreased AMPK enzymatic activity b...
متن کاملIncreased 2 Subunit–Associated AMPK Activity and PRKAG2 Cardiomyopathy
Background—AMP-activated protein kinase (AMPK) regulatory 2 subunit (PRKAG2) mutations cause a human cardiomyopathy with cardiac hypertrophy, preexcitation, and glycogen deposition. PRKAG2 cardiomyopathy is recapitulated in transgenic mice overexpressing mutant PRKAG2 N488I in the heart (TG 2). AMPK is a heterotrimeric kinase consisting of 1 catalytic ( ) and 2 regulatory ( and ) subunits. Two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 107 22 شماره
صفحات -
تاریخ انتشار 2003